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It is shown, that the plots of ω/T1 and NOE × ω/T1 versus –log ω give the distribution of ro-
tational correlation time τ plotted versus log τ and spread by (rather wide) “slit” functions
the form and shape of which are independent of the position on the log τ axis. When plot-
ting data at various temperatures, temperature shift factors aT and the plots versus –log (ωaT)
should be used. The plots permit to check the data compatibility and are helpful in studying
molecular dynamics. Examples of the plots are given. One example stimulated a consider-
ation of the segmental motion dynamics, which showed that the Hall–Helfand distribution
is inappropriate for a description of the orientational relaxation of the non-backbone (C–H)
bonds in a polymer chain.
Key words: NMR spectroscopy; Nuclear magnetic resonance; Spin-lattice relaxation; Nuclear
Overhauser enhancement; Graphical correlation; Polymer chain segmental motions; Rota-
tional autocorrelation function; Molecular dynamics.

Studying molecular dynamics by NMR is based on the fact that nuclear
magnetic spin relaxation is effected by molecular motions1. Dipole–dipole
interactions, spin-rotation, chemical shift anisotropy, and quadrupolar in-
teraction are mechanisms influencing the spin-lattice relaxation time T1. In
13C nuclei with directly bonded protons, the first mechanism is predomi-
nant, whereas in quadrupolar nuclei the last one prevails; contributions of
other mechanisms may often be neglected. Considering purely 13C-1H
dipolar mechanism in 13C nuclei, we obtain2
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where N is the number of protons directly bonded at the distance rCH to the
13C nucleus, h = h/(2π) is the reduced Planck constant, γH and γC are the
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magnetogyric ratios of the respective nuclei, ωH and ωC are the resonance
(Larmor) frequencies of the respective nuclei, and J(ω) is the Fourier trans-
form of the normalized second-order spherical harmonic autocorrelation
function G(t),

( ) ( )G t t= −3
2

1
2

2cos ,θ (2)

where θ(t) is the angle between the direction of the 13C–H bond at the time
0 and that at the time t. For the case of an isotropic rotational reorienta-
tion,

( )G t t( ) exp /= − τR (3)

and

( ) ( )J ω τ ω τ= +R R
2/ ,1 2 (4)

where τR is the rotational correlation time. For purely quadrupolar relax-
ation of deuterium nuclei, Eq. (5) holds3

( ) ( )( )1 3
10

4 2
1

2 2

T
J J= +π χ ω ωD D , (5)

where χ is the deuterium quadrupolar coupling constant and other symbols
have the same meaning as in Eq. (1). Nuclear Overhauser enhancement4

(NOE) is another source of information about the molecular motion. Under
conditions of validity of Eq. (1), NOE is given by5
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When the molecular motion is more complicated than an isotropic rota-
tional reorientation, Eqs (3) and (4) no longer hold. For the jump-like or
diffusive motions, they should be replaced by
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with amplitudes wi > 0 and w
i

r

i=∑ 1
= 1. In the jump-like case, 1/τi values are

some of the eigenvalues λi of a matrix compiled from the jump rates (jump
probabilities) and, in the diffusive case, some of the eigenvalues of the dif-
ferential equation obtained by separating off the time variable from the dif-
fusive equation. In the latter case, r may be infinite. For the free diffusive
rotation, with the correlation time τG, of a bond around an axis inclined by
an angle θ from the bond, λi = (i – 1)2/(6τG), i = 1, 2, 3, 4, ..., however, only
the first three 1/λi = τi may appear with non-zero wi in Eqs (7) and (8).
When, in addition, the molecule undergoes an isotropic reorientation of the
correlation time τR, r = 3, τ1 = τR, w1 = (3

2 cos2 θ – 1
2 )2, 1/τ2 = 1/τR + 1/(6τG), w2 =

3 sin2 θ cos2 θ, 1/τ3 = 1/τR + 4/(6τG), and w3 = 3
4 sin4 θ hold5 in Eqs (7) and (8).

When the system is infinite, the correlation time τ distribution becomes
continuous and Eq. (8) should be rewritten as

( ) ( ) ( )J wω τ τ ω τ τ= +
∞

−

∫
0

2 2 1
1 d (9)

with w(τ) ≥ 0 and w( )τ
0

∞

∫ d(τ) = 1. Introducing w(τ) in the form of a sum of
δ-functions, Eq. (9) is brought back to Eq. (8).

Considering dynamics of a polymer chain in the random coil state is a
rather difficult problem. Hence, Schaefer6 used an empirical log χ2 distribu-
tion for w(τ). This distribution is based on the χ2 distribution (called also
Schulz–Zimm distribution) applied to the variable log (1 + (b – 1)τ /τ)/log b
with τ being the average correlation time and with b usually set to 1 000.
Another empirical distribution of the correlation time (in studying me-
chanical properties, called relaxation time), the power-law one of the form

w p p p( ) ,τ τ τ= − −1
0 (10)
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spreading from zero to τ0 for positive and from τ0 to infinity for negative p,
is frequently used in studying viscoelastic properties of macromolecules.

In polymer chain dynamics studies, the chain atoms are often assumed to
be located in the diamond lattice7 sites. In the condensed phase, the free
volume necessary for allowing a motion is usually decisive for the motion
rate. The three-bond motion7 needs the least free volume, the four-bond
motion7 needs little more. The former leaves the direction of the central
moving bond unchanged and exchanges the directions of the terminal
moving bonds, in fact effecting a diffusion of bond directions among odd
and among even bonds along the chain. On this basis, Hall and Helfand8

considered a chain, in which correlated exchanges of bond directions
among neighbouring elements appeared at the rate λ1 and uncorrelated
changes of bond directions at the rate λ0, obtaining

( )( )( )w( ) / /
/

τ π τ τ τ τ τ= − −− − −1 1
0 1

1 2
1 1 (11)

for τ1 < τ < τ0 and w(τ) = 0 elsewhere; 1/τ0 = 2λ0 and 1/τ1 = 2λ0 + 4λ1. The
distribution defined by Eq. (11), extending from τ1 to τ0, will be hereinafter
called the Hall–Helfand (HH) distribution and denoted by H(τ; τ0, τ1). Then

( ) ( )[ ]J( ) / ,
/ /ω τ ω τ ω= − −− −

Re 1/ i i0

1 2

1

1 2
1 (12)

where Re means the real part and i means the imaginary unit. Such an ap-
proach neglects the backstep effect, i.e., the fact that the two neighbours of
a chain atom cannot occupy the same lattice location after the three-bond
jump, which hinders the diffusion of bond directions along the chain. The
backstep effect was considered by Dubois–Violette et al.9 (DV), yielding a
distortion of the distribution given by Eq. (11) with τ0 = ∞.

In a simulation of the chain motion, Geny and Monnerie10 confirmed
the t–1/2 decay of G(t) at long delay time t, found by DV. In another simula-
tion, Weber and Helfand11 considered molecular dynamics of a polyethyl-
ene chain and calculated G(t) for some unit vectors in the chain. The G(t)’s
of the vector bisecting the C–C–C angle and the out-of-plane vector could
well be fitted by Eq. (11) with finite τ0, whereas those of the C–C bond vec-
tor and of the vector joining next-but-one C neighbours required an addi-
tion of a long correlation time τ2 > τ0 in the form
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( ) ( ) ( )w H( ) ; , .τ α τ τ τ αδ τ τ= − + −1 0 1 2 (13)

The appearance of τ2 was assigned11 to a slow relaxation of the end-to-end
distance of the molecular chain.

Dejean, Lauprêtre, and Monnerie12 (DLM) considered, in addition to the
Hall–Helfand model8, a fast anisotropic libration of the 13C–H bond with
the correlation time τ2 << τ1 and reached

( )w H( )τ α= −1 (τ; τ0, τ1) + αH(τ; τ0τ2/(τ0 + τ2), τ1τ2/(τ1 + τ2)) . (14)

(Note that τ0 and τ2 are interchanged in ref.12 and 1/τ1 in this paper equals
1/τ2 + 2/τ1 there.) Replacing H(τ; τ0τ2/(τ0 + τ2), τ1τ2/(τ1 + τ2)) by δ(τ – τ2)
(which is a good approximation for τ2 << τ1), they again obtained Eq. (13),
but with τ2 << τ1. Equation (13) with such τ2 succeeded in good fitting back-
bone 13C T1 values of poly(methyl vinyl ether)12 and 13C T1 and NOE values
of poly(vinyl chloride)13, all measured at two resonance frequencies ωC and
several temperatures. At that, in changing temperature, τw(τ) was always as-
sumed just shifted on log τ scale without any shape change.

Usually, T1 and NOE data are too scarce for studying the correlation time
τ distribution: data at two12–14 or three3,15,16 resonance frequencies are
usual; more data (at five17 or seven18 frequencies) are rather an exception. A
way to overcome this difficulty is to correlate data at various temperatures.
Such an approach is commonly used with viscoelastic data19. It was found
that assuming the same temperature dependence (the same ratio at differ-
ent temperatures) for all correlation times and the temperature independ-
ence of the amplitudes was often a good approximation in considering
dynamic moduli data G′ and G′′ . Then

( )w w a aT T T T( ) / / ,τ τ=
0

(15)

where wT(τ) is the correlation time distribution at temperature T, aT is the
temperature shift factor, and T0 is the reference temperature; aT0

1= . This
means that in changing temperature from T0 to T, the τw(τ) distribution
function plotted versus log τ is just shifted by log aT on the log τ axis with-
out any shape change. Note that in shifting a discrete τ distribution (Eqs (7)
and (8)), the wi amplitudes are left unchanged (are not divided by aT).
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Equation (15) was used in interpreting T1 and NOE data12,13, although its
use was not explicitly stated. On the other hand, a narrowing of the τ distri-
bution with increasing temperature was found3 when log χ2 distribution6 of
τ was used.

The temperature dependence of aT should be smooth. Expressing the
temperature dependence of the decorrelation rate, 1/τ, by the Arrhenius
equation yields

a
H

T TT = −


 







 


exp .

∆
R

1 1

0

(16)

Equation (16) often works well in dilute polymer solutions and in bulk
polymers well above the glass transition temperature. With a correction for
the temperature dependence of the solvent viscosity, it was successfully
used16 in interpreting T1 and NOE data of polyisoprene dissolved in tolu-
ene-d8. Slightly above the glass transition temperature, Eq. (16) should be
replaced by20

( ) ( )( )a A T T A T TT = − − −∞ ∞exp / / ,0 (17)

where A and T∞ are adjustable parameters. This is due to the dominant role
of the free volume temperature change in the temperature change of the
correlation time distribution in this temperature region19.

The object of this paper is to suggest plots of the T1 and NOE NMR values
measured at various resonance frequencies and various temperatures, giving
a spread distribution of the correlation time τ, and to show examples of
such plots. A consideration of the segmental motion dynamics stimulated
at examining one of the plots is also presented.

THEORY

Introducing Eq. (9) into Eq. (1), (6), or (5), multiplying by ωC or ωD, and
normalizing properly, we obtain

f w Ki i i i( ) ( ) ( ) ,ω τ ω τ τ=
∞

∫ d
0

(18)
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where the subscript i = 1, 2, or 3 refers to Eq. (1), (6), or (5), respectively, ω1 = ω2 =
ωC, ω3 = ωD, f1(ωC) = 20 rCH

6 ln 10 × ωC/([6/(R + 1) + 3 + 1/(R – 1)]πN(h γHγC)2T1),
K1(x) = [6L((R + 1)x)/(R + 1) + 3L(x) + L((R – 1)x)/(R – 1)] × 2 ln 10/([6/(R + 1) +
3 + 1/(R – 1)]π), f2(ωC) = 5 rCH

6 ln 10 × NOE × ωC/(2πN(h γHγC)2T1), K2(x) =
[6L((R + 1)x) + 3L(x) – L((R – 1)x)] × ln 10/(4π), f3(ωD) = 20 ln 10 × ωD/(9π3χ2T1),
and K3(x) = (L(x) + 2L(2x)) × 2 ln 10/(3π); R = γH/γC and L(z) = z/(1 + z2).
Normalization is chosen so as to yield K xi ( )

−∞

∞

∫ d log x = 1, then also f i i( )ω
−∞

∞

∫
d log ωi = 1 in view of w( )τ

0

∞

∫ dτ = 1. Since the kernel Ki(ωi, τ) is a function of
just the product ωiτ, using a logarithmic scale, we have a convolution plus a
reversal of the logarithmic axis. This means, plotting ωC/T1 versus –log ωC,
NOE × ωC/T1 versus –log ωC, or ωD/T1 versus –log ωD, each properly scaled,
we obtain a plot of τw(τ) function versus log τ spread by a (rather wide)
“slit” function, whose form and width are independent of the position on the
log τ axis. The “slit” functions (showing the spread plots for w(τ) = δ(τ – 1)) are
shown in Fig. 1.

Introducing Eq. (15) into Eq. (18), we can see that

( )f f ai T i i T T i, ,( ) .ω ω=
0

(19)
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FIG. 1
“Slit” functions Ki(x) (Eq. (18)) plotted versus –log (x). The scaled plots: 1 ωC/T1 versus –log ωC
(i = 1), 2 NOE × ωC/T1 versus –log ωC (i = 2), 3 ωD/T1 versus –log ωD (i = 3) show the spread
rotational correlation time τ distribution function τw(τ) plotted versus log τ as viewed
through these “slit” functions
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Hence, plotting fi,T(ωi) values at various temperatures versus –log (aTωi), we
should obtain a single smooth curve, which is the spread τwT0

( )τ distribu-
tion plotted versus log τ. A similar plot of the T1 values was presented15 us-
ing (somewhat ambiguous) characteristic frequencies at various tempera-
tures in place of the shift factors aT and not recognizing that the plot repre-
sents a spread τ distribution. With scarce NMR data, it is impossible to pick
up the shift factors aT by graphically superimposing fi(ω) functions at vari-
ous temperatures as is usual with viscoelastic data. Instead, aT factors
should be refined simultaneously with the parameters of the chosen w(τ)
function using least squares. Also, it is impossible to check the validity of
approximating the temperature dependence of the correlation time distri-
bution with Eq. (15) by seeing whether superimposed fi(ω) functions match
in overlaps; this approximation should be introduced ad hoc relying on the
fact that it mostly works with viscoelastic data. An invalidity of Eq. (15)
may be traced when Eq. (15) fails to give a good data fit and much better
data fits can be obtained for individual temperatures with a reasonable tem-
perature dependence of parameters of w(τ).

It is desirable to have a graphic correlation of NMR relaxation data at vari-
ous temperatures to consider the data compatibility before a calculation of
parameters of the w(τ) function is started. For the above plot (Eq. (19)), a
trial temperature dependence of the shift factors aT should then be used.
Using Eq. (16) with a few trial ∆H/R values seems best. As an example,
f1(ωC) and f2(ωC) values (scaled ωC/T1 and NOE × ωC/T1) measured13 at vari-
ous temperatures and two resonance frequencies for methylene 13C nucleus
in poly(vinyl chloride) dissolved in 1,1,2,2-tetrachloroethane-d2 are plotted
versus –log (aTωC) in Fig. 2 using Eq. (16) with three different ∆H/R values.
We can see the temperature dependences of fi(ωC) at the two resonance
frequencies. Their mutual position shows that the ∆H/R value of 2 000 K is too
small, that of 4 000 K is too large, and that of 3 000 K (i.e., ∆H of 24.941 kJ/mol
or 5.959 kcal/mol) is roughly correct. (Note that a least-squares adjustment
using Eq. (8) with r = 4 yields ∆H/R of 3 310 K.) Alternatively, the aT factors
may be picked out by the graphic method15, developed for obtaining the
temperature dependence of characteristic frequencies.

EXAMPLES AND DISCUSSION

As the first example, the plot of experimental f1(ωC) values (i.e., scaled
ωC/T1) measured at a single temperature versus –log ωC is shown in Fig. 3 to-
gether with f1(ωC) calculated according to Eq. (8) with r = 2 and with wi and
τi adjusted by least squares. The 1.325 µs correlation time τ may be assigned

Collect. Czech. Chem. Commun. (Vol. 65) (2000)

1544 Jakeš:



Collect. Czech. Chem. Commun. (Vol. 65) (2000)

T1 and NOE NMR Data Plots 1545

FIG. 2
Plots versus –log (aTωC) of f1(ωC) (i.e., scaled ωC/T1 (1)) and f2(ωC) (i.e., scaled NOE × ωC/T1
(2)) values measured13 for methylene 13C nucleus in poly(vinyl chloride) dissolved in
1,1,2,2-tetrachloroethane-d2. aT = exp (∆H/(RT) – ∆H/(RT0)), T0 = 20 °C. The resonance fre-
quency: + 50.3 MHz, ❍ 75.4 MHz. The values of ∆H/R: a 2 000 K, b 3 000 K, c 4 000 K

FIG. 3
A plot of f1(ωC) values (i.e., scaled ωC/T1) measured by Zajíček et al.17 for C9,10 nuclei in
1,2-dioleoyl-sn-glycerol-3-phosphocholine vesicles at 50 °C. Crosses – f1(ωC) values; short
horizontal lines at crosses – estimated experimental errors in f1(ωC); smooth curve – f1(ωC)
calculated by Eq. (8) with r = 2 and τi and wi shown by vertical lines. Inset: a part of the
curve with experimental data; the thin curve corresponds to a different τi, wi set belonging
to another local minimum in the least squares
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to the overall tumbling of the vesicle, whereas that at 187.9 ps, having the
amplitude of 0.2868, to highly anisotropic segmental motions. Since the
NMR window allows for data in wings of both peaks only, a more detailed
study of the structure of the segmental correlation time distribution can be
hardly done. In the inset, large ambiguity in interpreting T1 data is demon-
strated. The thin curve shows the f1(ωC) function calculated with another
(wi,τi) set with τ1 = 2.120 ns, w1 = 0.02539, and τ2 = 38.39 ps, corresponding
to a different local minimum of the squares sum. The agreement is only
slightly worse than that of the previous solution: a single data is repro-
duced with an error (only slightly) exceeding its estimated uncertainty.
Were the latter solution correct, the fast segmental motions would effect
complete relaxation of the bond orientations on the nanosecond scale. It
turns out that T1 (and also NOE) data cannot resolve which part of the τ
amplitude missing in the NMR window is located over and which below
the window’s τ. It is also seen that extracting the order parameter S2 in the
model-free approach21 may sometimes be ambiguous.

A second example shows plots of measured13 f1,T(ωC) and f2,T(ωC) values
for methine and methylene 13C nuclei in poly(vinyl chloride) dissolved in
dibutyl phthalate versus –log (aTωC) together with f T1 0, (aTωC) and f T2 0, (aTωC)
functions calculated using DLM (Eq. (13)) parameters of ref.13 (Fig. 4). With
f2,T(ωC), calculated T1 and measured NOE values are used to show the fit of
the NOE values not disturbed by T1 deviations. The thin curves show the
τwT0

(τ) × ln 10 distributions, i.e., the deconvoluted f T1 0, (aTωC) or f T2 0, (aTωC) func-
tions. In insets, the plots of 1 000/T versus –log aT are shown to see the accuracy
with which the temperature shift factors obey the Arrhenius law; T0 = 20 °C.
The experimental T1 values at temperatures above 50 °C follow quite
smooth curves, whereas lower-temperature data reveal much greater devia-
tions. This may be due to a structure change between 41 and 61 °C (note
that the glass transition in bulk poly(vinyl chloride) appears22 at 83 °C).
The structure change may consist in that the aggregates of poly(vinyl chlo-
ride) molecules present in the dibutyl phthalate solution23 destroy when
temperature increases. Such a destruction was observed in 1,2-dichloro-
benzene24, dibutyl oxalate25, and diethyl oxalate25 solutions. The associated
segments are not seen in the high resolution NMR spectra; however, the ag-
gregation is likely to influence the dynamics of the non-associated seg-
ments. The NOE values above 50 °C follow smooth curves at each particular
resonance frequency; however, the curves are mutually shifted and show
different maxima. This indicates a systematic error in the NOE data, the
reason for which is not clear. The curves at 50.3 MHz better fit the calcu-
lated curves. The spread τw(τ) distributions show no traces of the
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half-power singularities present in w(τ). This means that the necessity for
such singularities in w(τ) is not confirmed experimentally.

The w(τ) distribution shown in Fig. 4 means that, at 20 °C, the isotropic
reorientation of the C–H bond appears at as fast correlation time as 44 ns.
The motional origin of such fast isotropic reorientation is not clear. The
correlation time of the overall tumbling, surely effecting the isotropic reori-
entation, was estimated13 to 25 µs at 30 °C. Estimating the value of 9.2 µs
for 61 °C on the basis of the τ0 dependence found in ref.13, I tried to refine
DLM parameters fixing τ0 at 9.2 µs for 61 °C. The results were essentially
the same as when fixing τ0 at infinity. This confirms the well-known fact
that the overall tumbling contributes essentially nothing to the T1 and
NOE values (they are rather insensitive to motions in the microsecond re-
gion). The latter results are shown in Fig. 5. Apparently, the calculated de-
crease, on the slow-time side, in the f T1 0, (aTωC) function (and hence in the
τw(τ) distribution) is too slow compared to that necessary for a good fit,
which the least-squares refinement compensates by increasing temperature
shifts. This confirms the well-known fact that the t–1/2 decay of the G(t)
function at long t is not compatible with experimental data. In the refine-
ment, only the data above 50 °C and NOE values only at 50.3 MHz were
used and different parameter sets were sought for each of methine and
methylene carbons. All the τ parameters, the temperature shifts, and the α
amplitude were refined simultaneously by least squares, minimizing
Σ(T1,exp/T1,calc – 1)2 + Σ(NOEcalc/NOEexp – 1)2 (T1,exp/T1,calc)2. The last factor
was introduced to linearize the problem with respect to α; it is, however, of
very little effect when the T1 fit is good. Equation (14) rather than Eq. (13)
was used for DLM in order not to involve in DLM different-type terms.

To throw more light on the problem, I reconsidered the three-bond mo-
tions of a chain in the diamond lattice as a model for skeletal motions of a
polymer chain. A comparison (Fig. 6) of the integral HH distribution (τ0 =
∞) with the DV result9 (W4 = 0) shows that DV cannot be approximated
with HH by mere lowering26 W3 by 21%. W3 should be lowered to less than
one half, and DV is more diffuse than HH; the half-power singularities at
the margins are still retained. The reason is that considering the discontinu-
ities in Pa

n as continuous variations26 is invalid even at long t since it ne-
glects the roots of the 1/τ(k) function (see ref.9, Appendix II) other than
that at k = 0, whereas DV has another root at k = π even when W4 is non-
zero. This further means that DV still gives the t–1/2 decay of G(t) at long t
even when four-bond motions are considered, in contrast to Eq. (10) of
ref.26.
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Plots versus –log (aTωC) of f1(ωC) (1) and f2(ωC) (2) for methine (a) and methylene (b) nuclei
in poly(vinyl chloride) dissolved in dibutyl phthalate. aT values of ref.13. Experimental val-
ues13: the resonance frequency + 50.3 MHz, ❍ 75.4 MHz. Thick smooth curves: values calcu-
lated with parameters13. Vertical lines indicate the positions of τ2, τ1, and τ0, their heights
show the values of α and 1 – α. Thin smooth curves: the correlation time τ distributions d =
ln 10 × τw(τ). Insets: plots of 1 000/T versus –log aT. Reference temperature: 20 °C
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FIG. 5
The same plots as in Fig. 4 with parameters for the smooth curves and aT factors refined us-
ing data above 50 °C, neglecting NOE values at 75.4 MHz. τ0 fixed at infinity. Reference
temperature: 61 °C. The doublet of vertical lines shows the extent of the Hall–Helfand distri-
bution (Eq. (11)), the unpaired vertical line shows the value of τ1
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Describing the relaxation problem merely with Pa
n concentrations, DV es-

timates the Pa
n correlations and other concentrations by the maximum en-

tropy principle, which is exact in the equilibrium state, may be, however, a
crude approximation only in the course of the relaxation. To estimate the
error involved, I considered the exact kinetics of the three-bond relaxation,
assuming the bond direction sequence periodic with eight bonds in the pe-
riod and respecting the excluded volume effect by prohibiting nonbonded
chain atoms to occupy adjacent diamond lattice locations. The result com-
pared with DV and with DV with the same periodicity condition (Fig. 7) is
still more diffuse and the singularity at the fast-time margin seems smeared
out. However, in view of the great width of the “slit” functions (Fig. 1),
even the difference between the exact solution and HH does not seem to
have an appreciable effect on the T1 and NOE data.

In calculating the exact kinetics, I noticed that the relaxation of the
non-backbone (C–H) bonds may be very different from that of the back-
bone (C–C) bonds considered above and I also calculated the τ distribution
for the non-backbone bonds (Fig. 8). The great difference between the re-
laxation of the C–H and the C–C bonds is caused by the fact that only the
three-bond motions over odd central bonds contribute to the relaxation of
even backbone bonds and vice versa, whereas both “odd” and “even”
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FIG. 6
Comparison of the integral Hall–Helfand distribution (τ0 = ∞) with that by Dubois–Violette
(W4 = 0). Thick curve: the distribution by Dubois–Violette. Thin curves: the Hall–Helfand
distributions 1 W3 unchanged, 2 W3 scaled to give the same extent of HH as DV has, 3 W3
scaled to give the closest touch with DV at slow τ
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FIG. 8
Comparison of the exact integral distribution
for the non-backbone C–H bonds with the pe-
riodicity condition as in Fig. 7 (the thick his-
togram) with that “squared” for the backbone
C–C bonds (the thin histogram)

FIG. 7
Comparison of the integral Dubois–Violette
distribution with the exact distribution.
Smooth curve: Dubois–Violette distribution.
Thin histogram: Dubois–Violette distribution
with the periodic bond sequence and eight
bonds in the period. Thick histogram: the ex-
act distribution with the same periodicity
condition and respecting the excluded vol-
ume effect
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three-bond motions contribute to the relaxation of the non-backbone
bonds. Were the “odd” and “even” three-bond motions independent (as in
fact HH assumes),

G t G tC – H C – C( ) ( )= 2 (20)

would hold. A comparison of the τ distribution for GC – C
2 (t) with that for

GC – H (t) under the above periodicity condition shows very little difference
(Fig. 8), justifying Eq. (20) as a good approximation. With this, the t–1 decay
of GC – H (t) at long t is expected instead of the t–1/2 decay introduced by HH
with τ0 = ∞.

The results of the refinement of the DLM parameters with HH replaced by
its square and τ0 set to infinity for the above considered poly(vinyl chlo-
ride) data are shown in Fig. 9. Note that the squared H(τ;∞, 2τ1) distribution
spreads from τ1 to infinity and possesses a logarithmic singularity at τ = 2τ1.
The agreement of the experimental and calculated values is quite good and
comparable with that of Fig. 4, showing that the t–1 decay of G(t) at long t is
compatible with the experimental data. A flaw of this approach is that the
expression for the respective J(ω) involves the complete elliptic integral of
the first kind with the complex modulus. Hence, I tried to replace the
square of HH by a more simple distribution, for which a distribution uni-
form in 1/τ (i.e., the distribution (10) with p = –1) seemed useful. The result
is given in Fig. 10, showing perhaps a still slightly better agreement than
that in Fig. 9. This may be due to the fact that Eq. (10) is stronger in the
long-τ queue than the square of HH; the exact three-bond τ distribution is
also expected stronger in the long-τ queue than HH with infinite τ0 (cf. Figs
6 and 7).

The dynamics of the dissolved atactic poly(vinyl chloride) is in fact very
far from the simple three-bond model: note, e.g., the differing conformer
energy differences27 in the iso-, syndio-, and hetero-2,4,6-trichloroheptane
stereoisomers as models for poly(vinyl chloride) of the respective tacticity.
Despite of this fact, no13 or little28 dependence of the T1 values on the
tacticity was found. The successful interpretation of the data is caused by
smearing out all details of the τ distribution by wide “slit” functions (Fig. 1).
Only the part of the τ distribution present in the long-τ queue seems some-
how determined, due to the resolution of the “slits” uniform on the loga-
rithmic scale. In the parameter refinement, the position of τ2 is rather
uncertain (the data are nearly insensitive to motions in the picosecond as
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well as in the microsecond regions). Hence, in no way is it confirmed that
the C–H librations have the same temperature τ-dependence as the segmen-
tal motions have.
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FIG. 9
The same plots as in Fig. 5 with HH in the DLM distribution replaced by its square
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FIG. 10
The same plots as in Fig. 5 with HH in the DLM distribution replaced by a distribution uni-
form in 1/τ
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Strictly speaking, the assumption that all correlation times have the same
temperature dependence never holds in polymers, since activation energies
of overall tumbling, methyl rotation, C–H libration, and skeletal motions
are different. Practically, the correlation times of the methyl rotation and
C–H libration lie in the picosecond region and that of overall tumbling lies
in the microsecond region, and the actual position of a correlation time
within either of these regions influences T1 and NOE values very little (a
very fast methyl rotation just increases T1 nine times and leaves NOE un-
changed when X–C–H angle is tetrahedral). Small differences in the tempera-
ture dependence of various skeletal motions (e.g., between λ0 and λ1 in Eq. (11))
can be hardly detected, since the details of the τ distribution are widely
smeared out by spreading with the “slit” functions shown in Fig. 1. When
using just two resonance frequencies at each temperature, even large tem-
perature dependence differences are likely to remain undetected. Hence,
the ability of Eq. (15) to correlate T1 and NOE data at various temperatures
depends both on differences in the activation energies of various skeletal
motions and on the amount and accuracy of the data. On the other hand,
when log χ2 distribution6 showed a narrowing with increasing tempera-
ture3, it does not mean that Eq. (15) cannot work with another τ distribu-
tion type. A narrowing of the τ distribution with increasing temperature
follows, e.g., when the uncorrelated exchange rate λ0 in Eq. (11) increases
with temperature faster than the correlated one λ1.

The discrepancy between the segmental motion simulations by Geny and
Monnerie10 and by Weber and Helfand11 should be discussed. It originates
in the bad resolution of the Laplace transform inversion being one half of
decade at the best29. From this point of view, the τ2 correlation time, which
is one half of decade to one decade slower11 than τ0, is more likely to repre-
sent the long-τ queue of the segmental τ distribution with the t–1/2 decay of
G(t) found10, rather than to represent the slow relaxation of the end-to-end
distance as was claimed11. HH with infinite τ0 fails, apparently due to the
great difference between it and the actual τ distribution (cf. Figs 6 and 7).
The absence11 of τ2 in G(t) of the non-backbone bonds (the out-of-plane
and bisector vectors) indicates that their long-τ queue is weaker in accord
with what was found above, and representable by HH with a finite τ0. The
possibility to fit the above data by HH with finite τ0 (Fig. 4) on the one
hand and by the square of HH with infinite τ0 (Fig. 9) or by distribution (10)
(Fig. 10), both having t–1 decay of G(t) at long t, on the other supports this
interpretation. In this respect, τ0 of HH can be seen not to have any
motional origin; however, it is just a phenomenological parameter compen-
sating the difference between the HH and actual distributions. From this
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point of view, the Hall–Helfand distribution (11) is inadequate for a de-
scription of the relaxation of the non-backbone chain bonds by segmental
motions: it is inappropriate to use a distribution with singularities having
neither theoretical nor experimental support, when a simpler distribution
with one parameter less (Eq. (10)) fits the data.

Figure 8 shows that the jump at short-τ margin is probably smoothed. If
experimental data show a necessity for such a smoothing, distribution (10)
should be replaced by the generalized exponential (GEX) distribution30,31

( )( ) ( )w s p sp p s
( ) exp / / /τ τ τ τ τ= −− −1

0 0 Γ (21)

with p = –1 and a finite negative s (s = –∞ gives the distribution (10)). If, in
Eq. (10) or (21), a refinement of p to a value different from –1 were tried, p
would be expected to compensate the difference between the used and ac-
tual distributions, rather than to give the actual decay of the τ queue, due
to the limited extent to long τ of the NMR window.

Although, in the short-time region, the exact solution with the
eight-periodicity condition (Figs 7 and 8) seems fine enough due to the
wide spreading caused by the “slits”, it cannot estimate the form of the
long-τ queue reliably. Even extending the period up to sixteen chain bonds
(this calculation can be hardly performed by recently accessible means) is
unlikely to give substantially more information. Hence, I give a speculative
consideration of the matter. The purely diffusive relaxation of the bond ori-
entation gives the t–1/2 decay of G(t) since the excess of the orientation of
the bond being relaxed (i.e., Pa

0 = 1 instead of the equilibrium value of 1/4)
is not lost but only dissipated, and hindering by the backstep effect may
only slow down the decay. (The exponential decay of the Jones–Stockmayer
model32 (JS) does not contradict this since, in JS, a half of the relaxation of
the terminal bonds of the interacting segment proceeds non-diffusively.)
Hence, the three-bond model should yield the t–1/2 decay or slower for the
backbone and t–1 or slower for the non-backbone bonds. The four-bond
motions provide non-diffusive relaxation of the bond orientation. With DV
approximation9, the decay is still t–1/2 (see above). Under the eight-
periodicity condition, including four-bond motions, up to 2/3 of the excess
is lost in some conformations. With a periodicity long enough, complete
loss is possible, allowing speeding up the decay. However, the suitable con-
formations are very rare, so that the non-diffusive relaxation can be hardly
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expected faster than the overall tumbling. Hence, the exponential decay of
G(t) should be expected on the time scale of overall tumbling only.

CONCLUSIONS

The plots of ω/T1 and NOE × ω/T1 values versus –log ω were found to repre-
sent the distribution of the orientational correlation time τ spread with
rather wide “slit” functions and as such very useful in correlating T1 and
NOE data at various resonance frequencies ω. For correlating data at various
temperatures, the plots versus –log (ωaT) should be used, with temperature
shift factors aT following the Arrhenius or Williams–Landel–Ferry equation,
or with the factors obtained by a parameter refinement. On the basis of the
plots and of a consideration of the segmental motion dynamics, the
Hall–Helfand distribution of the correlation time τ was found inadequate
for the description of the orientational relaxation by the segmental mo-
tions of the non-backbone (C–H) bonds in a polymer chain. An alternative
distribution was suggested. The orientational relaxation of the
non-backbone chain bonds was found considerably different from that of
the backbone bonds.
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